
COP 4710: Database Systems (Chapter 4) Page 1 Mark Llewellyn

COP 4710: Database Systems
Spring 2006

Chapter 4 – Relational Query Languages – Part 2

COP 4710: Database Systems
Spring 2006

Chapter 4 – Relational Query Languages – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006

COP 4710: Database Systems (Chapter 4) Page 2 Mark Llewellyn

• It can be proven (although we aren’t going to go through that proof)
that the five fundamental relational operations are sufficient to
express any relational-algebra query.

• What this proof doesn’t state however, is that some complex queries
will require extremely lengthy and difficult query expressions.

• There have been several extensions of the set of operations available
in the relational algebra that provide no additional expressive power,
but do provide a simplification in the expression required for more
complex queries.

• We’ll look at the most important and common of these redundant
operations and also show their definition in terms of the five
fundamental operations

Redundant Operators in Relational Algebra

COP 4710: Database Systems (Chapter 4) Page 3 Mark Llewellyn

Sample Database Scheme

city

Suppliers

pnum

snum

name status

city

Parts Jobs

name

color

weight

city

jnum

name numworkers

shipment

qty

date

COP 4710: Database Systems (Chapter 4) Page 4 Mark Llewellyn

Sample Database Scheme
Suppliers

snum name status city

pnum

Parts

name color weight city

jnum

Jobs

name numworkers city

Shipments

snum pnum jnum qty date

COP 4710: Database Systems (Chapter 4) Page 5 Mark Llewellyn

• The intersection operation produces the set of tuples that appear in
both operand relations.

Intersection Operator
Type: binary
Symbol: ∩
General form: r ∩ s where r and s are union compatible relations
Schema of result relation: schema of operation relation
Size of result relation (tuples): ≤ ⏐r⏐
Definition: r ∩ s ≡ r − (r − s)
Example:

(π(p#)(SPJ)) ∩ (π(p#)(P))

COP 4710: Database Systems (Chapter 4) Page 6 Mark Llewellyn

Intersection Operator Examples

6
34
7
1
D

no
yes
no
yes
C

d
f
d
a
B

a
c
b
a
A

34
1
D

yes
yes
C

f
a
B

c
a
A

r = R ∩ SR

56
34
3
1
H

no
yes
yes
yes
G

n
f
r
a
F

m
c
b
a
E

S

30
31
H

yes
no
G

f
r
F

b
a
E

T

DCBA

r = R ∩ T

COP 4710: Database Systems (Chapter 4) Page 7 Mark Llewellyn

• As we saw in some of our earlier query expression which involved
the Cartesian product operator, we had to provide additional
selection operations to remove those combinations of tuples that
resulted from the Cartesian product which weren’t related (they
didn’t make sense like when a shipment of a specific part was
combined with part information but the part information didn’t
belong to the part that was being shipped).

• This occurs so commonly that an operation which is a combination
of the Cartesian product and selection operations was developed
called a join operation.

• There are several different join operations which are called, theta-
join, equijoin, natural join, outer join, and semijoin. We will
examine each of these operations and explore the conditions of their
use.

Join Operators

COP 4710: Database Systems (Chapter 4) Page 8 Mark Llewellyn

• The theta-join operation is a shorthand for a Cartesian product followed by a
selection operation.

• The equijoin operation is a special case of the theta-join operation that
occurs when all of the conditions in the predicate are equality conditions.

• Neither a theta-join nor an equijoin operation eliminates extraneous tuples
by default. Therefore, the elimination of extraneous tuples must be handled
explicitly via the predicate.

Theta-Join and Equijoin Operators
Type: binary
Symbol/general form:
Schema of result relation: concatenation of operand relations
Definition: ≡ σ(predicate)(r × s)
Examples:

() sr predicate><

() sr predicate><

() sr 3sizeANDbluecolor == ''>< () sr 3sizeANDbluecolor >= ''><

an equijoin a theta-join

COP 4710: Database Systems (Chapter 4) Page 9 Mark Llewellyn

Theta-Join Operator Examples

6
34
7
1
D

no
yes
no
yes
C

d
f
d
a
B

a
c
b
a
A

56nonm6noda
34yesfc6noda
3yesrb6noda
56nonm34yesfc
3yesrb34yesfc
56nonm7nodb
34yesfc7nodb
3yesrb7nodb
56nonm1yesaa
34
3
H

yes
yes
G

f
r
F

c
b
E

1
1
D

yes
yes
C

a
a
B

a
a
A

R

56
34
3
1
H

no
yes
yes
yes
G

n
f
r
a
F

m
c
b
a
E

S

SRr)F.SB.R(<= ><

COP 4710: Database Systems (Chapter 4) Page 10 Mark Llewellyn

• The natural-join operation performs an equijoin over all attributes in the two
operand relations which have the same attribute name.

• The degree of the result relation of a natural-join is sum of the degrees of the
two operand relations less the number of attributes which are common to
both operand relations. (In other words, one occurrence of each common
attribute is eliminated from the result relation.)

• The natural join is probably the most common of all the forms of the join
operation. It is extremely useful in the removal of extraneous tuples. Those
attributes which are commonly named between the two operand relations are
commonly referred to as the join attributes.

Natural Join Operator
Type: binary
Symbol/general form:
Schema of result relation: concatenation of operand relations with
only one occurrence of commonly named attributes
Definition: ≡
Examples:

sr∗

sr ∗ sr ibutescommonattrsibutescommonattrr)..(=><

pspjs ∗∗

COP 4710: Database Systems (Chapter 4) Page 11 Mark Llewellyn

Natural Join Operator Examples

6
34
7
1
D

no
yes
no
yes
C

m
f
r
a
B

a
c
b
a
A

56non6noma
34
1
H

yes
yes
G

f
a
M

1
1
D

yes
yes
C

a
a
B

a
a
A

r = R * SR

56
34
3
1
H

no
yes
yes
yes
G

n
f
r
a
M

m
a
b
a
B

S

30
31
H

yes
no
G

r
f
B

b
a
A

T

30yes7norb
HGDCBA

r = R * T

COP 4710: Database Systems (Chapter 4) Page 12 Mark Llewellyn

Outer Join Operator
Type: binary
Symbol/general form: left-outer-join: right-outer-join:

full outer join:
Schema of result relation: concatenation of operand relations
Definition:

≡ natural join of r and s with tuples from r which do not have a match
in s included in the result. Any missing values from s are set to null.

≡ natural join of r and s with tuples from s which do not have a match
in r included in the result. Any missing values from r are set to null.

≡ natural join of r and s with tuples from both r and s which do not
have a match are included in the result. Any missing values are set to null.
Examples: Let r(A,B) = {(a, b), (c, d), (b,c)} and let

s(A,C) = {(a, d), (s, t), (b, d)}
then = (A,B,C) = {(a,b,d), (b,c,d), (c,d,null)},

= (A,B,C) = {(a,b,d), (b,c,d), (s,null,t)}, and
= (A,B,C) = {(a,b,d), (b,c,d), (s,null,t), (c,d,null)},

sr <⊃
sr ⊂>

sr <⊃

sr ⊂>

sr <⊃ sr ⊂>

sr ⊂⊃<>

sr ⊂⊃<>

sr ⊂⊃<>

COP 4710: Database Systems (Chapter 4) Page 13 Mark Llewellyn

Outer Join Operator Examples

9
6
3
C

8
5
2
B

7
4
1
A

1276null
null987
null654
11
10
D

3
3
C

2
2
B

1
1
A

R

12
11
10
D

7
3
3
C

6
2
2
B

S

null987
null654
11321
10321
DCBA

SRr ⊂⊃= ><

SRr <⊃=
SRr ⊂= >

null1276
11132
11032
ADCB

COP 4710: Database Systems (Chapter 4) Page 14 Mark Llewellyn

c

• The semi-join operation performs a join of the two operand relations
and then projects over the attributes of the left-hand operand relation.

• The primary advantage of the semi-join operation is that it decreases
the number of tuples that need to be handled to form the join. This is
particularly useful in a distributed environment.

• In its general form, which is shown above, the semi-join is a semi-
theta-join. The expected variants of a semi-equijoin and a semi-
natural-join are defined in a similar fashion.

Semi Join Operator
Type: binary
Symbol/general form:
Schema of result relation: schema of r
Definition: ≡ π(attributes of r)
Examples: see next page

() sr predicate>

() sr predicate> ()()sr predicate><

COP 4710: Database Systems (Chapter 4) Page 15 Mark Llewellyn

Semi Join Operator Examples

6
34
7
1
D

no
yes
no
yes
C

m
f
r
a
B

a
c
b
a
A

34yesfc

6

7

D

no

no

C

m

r

B

a

b

A

R

no
no
yes
yes
C

n
f
r
e
M

r
a
b
a
B

S

nonr
yesrb
nofa
yesea
CMB

g
f
e
d
D

2
4
7
4
G

m
a
b
a
B

T

SRr)M.SB.R(>= >

TSr)4G.T(== >

SRr >=

7norb

1

D

yes

C

a

B

a

A

TSr gMSANDGT).()4.(>== >

nonr
yesrb
CMB

COP 4710: Database Systems (Chapter 4) Page 16 Mark Llewellyn

c

Requirements for the division operation:

1. Relation r is defined over the attribute set A and relation s is defined over the
attribute set B such that B ⊆ A.

2. Let C be the set of attributes in A − B.

Given these constraints the division operation is defined as: a tuple t is in r÷s if for
every tuple ts in s there is a tuple tr in r which satisfies both:

tr [C] = ts [C] and tr [A-B] = t[A-B]

Division Operator
Type: binary
Symbol/general form: r ÷ s where r({A}) and s({B})
Schema of result relation: C where C = A − B
Definition: r÷s ≡ π(A-B)(r) − (π(A-B)((π(A-B)(r) × s) − r))
Examples:
Let r(A,B,C) = {(a,b,c), (a,d,d), (a,b,d), (a,c,c), (a,d,d)}
and s(C) = {(c), (d)}
then: r ÷s = t(A,B) = {(a,b)}

COP 4710: Database Systems (Chapter 4) Page 17 Mark Llewellyn

Division Operator Examples

34no rb

34yesge
6

34
1
1
D

no

yes
no
yes
C

m

f
r
f
B

a

a
b
a
A

norb
yes
C

f
B

a
A

R

34
1
D

S

a
A

34
1
D

yes
yes
C

T

SRr ÷= TRr ÷=

f
B

a
A

U

34
1
D

no
no
C

URr ÷=

r
B

b
A

6nom
f
f
B

34
1
D

yes
yes
C

V

VRr ÷=

g
f
B

69
1
D

yes
yes
C

W

A
WRr ÷=

COP 4710: Database Systems (Chapter 4) Page 18 Mark Llewellyn

• The redundant relational algebra operators are redundant
because they are all defined in terms of the five
fundamental operators.

• Their usefulness however, is best illustrated by the
division operator.

• Consider the following query based on the suppliers-
parts-jobs-shipment database given earlier:

Query: Find the supplier numbers for those suppliers
who ship every part.

• A solution to this query is given on the next page using
only the five fundamental operators and then again using
the redundant operators.

Usefulness of the Redundant Operators

COP 4710: Database Systems (Chapter 4) Page 19 Mark Llewellyn

Using only the five fundamental operators

• T1 = π(s#, p#)(spj) //all (s#,p#) pairs for actual shipments

• T2 = π(p#)(p) //all (p#) {all parts that exist, whether shipped or not}

• T3 = π(s#)(T1) × T2 //all s# in T1 paired with every tuple in T2 {spj.s#, p.p#}

• T4 = T3 – T1 //all tuples in T3 which are not also in T1

• T5 = T1 – T4 //all tuples in T1 which are not also in T4.

• T6 = π(s#)(T5) //solution

Final solution is: π(s#)(spj) − (π(s#)((π(s#)(spj) × p) − spj))

Using the redundant operators

Solution is: (π(s#, p#)(spj)) ÷ (π(p#)(p))

Usefulness of the Redundant Operators (cont.)

COP 4710: Database Systems (Chapter 4) Page 20 Mark Llewellyn

1. Find all the supplier numbers for suppliers located in Milan or who ship to
any job in a quantity greater than 40.

[π(s#)(σ(city = Milan)(S))] ∪ [π(s#)(σ(qty > 40)(SPJ))]

2. Find all the supplier numbers for suppliers who ship only red parts.

[π(S.name)(σ((SPJ.s#=S.S#) AND (SPJ.p#=P.p#) AND (color=red))(SPJ × S × P))]

− [π(S.name)(σ((SPJ.s#=S.S#) AND (SPJ.p#=P.p#) AND (color ≠ red))(SPJ × S × P))]

Some Practice Queries Using Only Five
Fundamental Operators

COP 4710: Database Systems (Chapter 4) Page 21 Mark Llewellyn

3. Find the supplier names for those suppliers who are located in the same
city as a job to which they ship parts.

• T1 = (S × SPJ × J)

• T2 = σ(S.s# = SPJ.s#)(T1) //select tuples which match on s#

• T3 = σ(J.j# = SPJ.j#)(T2) //select tuples which match on j#

• T4 = σ(J.city = S.city)(T3) //select tuples from the same city

• T5 = π(S.name)(T4) //project final attribute set

Some Practice Queries Using Only Five
Fundamental Operators (cont.)

COP 4710: Database Systems (Chapter 4) Page 22 Mark Llewellyn

4. Find all the part numbers which are shipped by both supplier “S1” and
supplier “S2”.

NOTE: The following expression in not correct! Why not?

π(p#)(σ((s# = S1) AND (s# = S2))(SPJ))

The following is the correct way of expressing this query in RA.

[π(p#)(σ(s#=S1)(SPJ)] – ([π(p#)(σ(s#=S1)(SPJ)] − [π(p#)(σ(s#=S2)(SPJ)])

Some Practice Queries Using Only Five
Fundamental Operators (cont.)

COP 4710: Database Systems (Chapter 4) Page 23 Mark Llewellyn

5. Find the supplier numbers for those suppliers who supply both a red part
and a blue part.

NOTE: The following expression in not correct! Why not?

π(s#)(σ((color = blue) AND (SPJ.p# = P.p#) AND (color=red)) (P × SPJ))

The following is the correct way of expressing this query in RA.

T1 = π(s#)(σ((color = blue) AND (SPJ.p# = P.p#)) (P × SPJ))

T2 = π(s#)(σ((color = red) AND (SPJ.p# = P.p#)) (P × SPJ))

T3 = T2 – T1

T4 = T2 – T3

Some Practice Queries Using Only Five
Fundamental Operators (cont.)

COP 4710: Database Systems (Chapter 4) Page 24 Mark Llewellyn

6. Find all pairs (s#, j#) such that the supplier and the job are located in the
same city, yet that supplier does not have a shipment to that job.

T1 = π(s#, j#)(σ(S.city = J.city)(S × J)) //all (s#,j#) pairs in same city

T2 = π(s#, j#)(σ((S.city = J.city) AND (SPJ.j# = J.j#) AND (SPJ.s# = S.s#))(S × SPJ × J))

//T2 contains all (s#,j#) pairs representing shipments by suppliers to jobs
in the same city.

T3 = T1 – T2

Some Practice Queries Using Only Five
Fundamental Operators (cont.)

COP 4710: Database Systems (Chapter 4) Page 25 Mark Llewellyn

• Unlike the base relations in a database, the intermediate relations
which are produced as the result of the evaluation of a query, do not
have names to which they can be referred. Unless the intermediate
relation is explicitly saved, it does not exist after the execution of the
query. Many times, however, it is quite useful to save an
intermediate relation as it may contain a set of tuples which answer a
related query, or it will contain a set of tuples which can be used to
evaluate another query and saving the intermediate relation will
mean that the same work will not need to be repeated.

• The rename operation is represented by the lowercase Greek letter
rho (ρ) and it can be used to rename both relations as well as
attributes.

• The first common form of the rename operation applies to relations.

• General form: ρnew relation name(relation)

• Thus, ρx(r) renames the relation r to relation x.

Renaming Operator

COP 4710: Database Systems (Chapter 4) Page 26 Mark Llewellyn

• The second form of the rename operation applies to the
renaming of both the relation as well as the attributes of
that relation. Assuming that the operand relation is of
degree n, then the form of this version of the rename
operation is:

• General form: ρnew relation name (A1, A2, …, AN)(relation)

• Thus, ρx(one, two, …, last)(r) renames relation r to relation x
and the n attributes of relation x are names one, two, …,
last.

Renaming Operator (cont.)

COP 4710: Database Systems (Chapter 4) Page 27 Mark Llewellyn

1. List all pairs of supplier numbers for suppliers who are
located in the same city.

2. List every shipment involving a green part.

3. List all the supplier numbers for suppliers who ship a part
that is manufactured in the same city in which the
supplier is located.

4. List the names of those suppliers who ship all the blue
parts.

5. List the supplier numbers for those suppliers who ship
only blue parts.

Practice Queries Using All Relational Algebra
Operators (Answers on Next Page)

COP 4710: Database Systems (Chapter 4) Page 28 Mark Llewellyn

Practice Queries Using All Relational Algebra
Operators (Answers)

)))((()#.,#.(ss xsxss ρπ ><
1.

2.))(()(pspj greencolor=σ><

3.

4.

5.

)()#.(spjpsss ><><π

))))(()((()()#()#,#().(pspjs bluecolorppsnames =σπ÷ππ ><

))))(((())))(((()()#()()#(pspjpspj bluecolorsbluecolors ≠= σπ−σπ ><><

COP 4710: Database Systems (Chapter 4) Page 29 Mark Llewellyn

• Relational algebra was a procedural query language. You specified
in the query expression what data you wanted (this was usually given
by the final projection) and you specified how the DBMS was to go
about getting this data. The how was specified in the sequence of
operations that you put together in order to answer your query.

• Relational calculus is a non-procedural query language that has two
basic forms: tuple relational calculus and domain relational
calculus. While they are similar in nature there are fundamental
differences in the two forms.

• For now, we will focus on the tuple relational calculus. We won’t
look at either of the calculus languages in quite the same detail that
we did with the relational algebra, we’re more interested here in
giving you an idea of what these pure languages look like since they
form the foundation of the implemented languages such as SQL that
we’ll see later.

Tuple Relational Calculus

COP 4710: Database Systems (Chapter 4) Page 30 Mark Llewellyn

• Tuple relational calculus was used as the basis for the query
language of the INGRES database system developed at Bell Labs in
the late 1970s and domain relational calculus is the basis for the
query language QBE (Query-By-Example) developed by IBM as
part of the system R project also in the early 1970’s.

• In terms of completeness, tuple relational calculus and relational
algebra are equivalent. By completeness we mean that any query
which can be expressed in relational algebra can also be expressed in
tuple calculus and vice versa.

• Tuple calculus is based upon first-order predicate calculus, which is
the calculus of logic. The basic tuple calculus expression looks like
the following:

{ t | P(t)} read as: the set of tuples t such that the predicate P is true.

t is a tuple variable.

Tuple Relational Calculus (cont.)

COP 4710: Database Systems (Chapter 4) Page 31 Mark Llewellyn

• A tuple variable is simply a variable which at any time can assume
the value of one of the tuples in a relation instance.

• A tuple variable “ranges over” or assumes values from only a single
relation instance at a time.

• The typical notation for indicating the range of a tuple variable is:
tuple-variable(relation).

– An example might be: t(S) which would indicate that tuple variable t
assumes values which are tuples from the relation named S.

• Since a tuple variable takes on values which are entire tuples from a
given relation and we often need only a subset of the attributes
contained in a given tuple, the notation for this is tuple-
variable.attribute-name. Notice that this is basically the same
notation as we used for the qualified attribute name in the relational
algebra.

Tuple Relational Calculus (cont.)

COP 4710: Database Systems (Chapter 4) Page 32 Mark Llewellyn

• In general, the predicate consists of any number of tuple variables
occurring in what are known as well-formed formulas (WFFs in
predicate calculus parlance).

• A tuple variable exists in one of two states, either free or bound. A
tuple variable is bound to a WFF through a quantifier.

• There are essentially two quantifiers of concern: the existence
quantifier (denoted by the symbol ∃) and the universal quantifier
(denoted by ∀).

• The only free tuple variables that can exist in a tuple calculus
expression are those which appear to the left of the “such that” bar.

• If f is a WFF and t is a tuple variable, then if t is free in f it is bound
in both ∃t(f) and ∀t(f). In other words, the quantification of t causes
its binding to a WFF (predicate).

Tuple Relational Calculus (cont.)

COP 4710: Database Systems (Chapter 4) Page 33 Mark Llewellyn

• ALL WFFs evaluate to either true or false. In other
words, the predicate is either satisfied by the tuple
variables or it isn’t.

• Thus the WFF, ∃t(f) evaluates to true if there exists some
tuple t which makes the predicate f true. If there does not
exist a tuple (that can be assigned to t) which makes the
predicate f true, then the value of this WFF must be false.

• Similarly, the WFF, ∀t(f) evaluates to true only if every
tuple which can be assigned to t makes the predicate true.
If there exists even a single tuple for which the predicate
is false, then the WFF will evaluate to false.

Tuple Relational Calculus (cont.)

COP 4710: Database Systems (Chapter 4) Page 34 Mark Llewellyn

• To see that the tuple calculus is equivalent to relational algebra (and vice
versa), I’ve included the definitions of several of the more common
relational algebra operators as they would appear in the tuple calculus.
You don’t need to remember these equivalences, just look at them and
convince yourself that they are the same.

• Union: R ∪ S ≡ {t | t(R) or t(S)} //set of tuples | t∈R or t∈S

• Intersection: R ∩ S ≡ {t | t(R) and t(S)} //set of tuples | t∈R and t∈S

• Difference: R – S ≡ {t | t(R) and not(t(S))} //set of tuples | t∈R and t∉S

• Selection: σ(p)(R) ≡ {t | t(R) and P(t)} // tuples t | t∈R and p is true

Equivalence of Tuple Relational Calculus
and Relational Algebra

COP 4710: Database Systems (Chapter 4) Page 35 Mark Llewellyn

• The four relational algebra operations above are fairly simple to express
in tuple calculus, however projection and Cartesian product are not quite
as simple as you can see below and the join operations get quite nasty, so
we’ll avoid them altogether.

• Cartesian product:

R × S ≡ {t(r+s) | ∃u(R) (∃v(S)(t[1]=u[1] and …and t[r]=u[r] and

• t[r+1]=v[1] and…and t[r+s]=v[s]))}

The notation t(r+s) indicates the degree of the tuple variable which in the
case of the Cartesian product is the sum of the degrees of the two
operand relations.

• Projection:

Equivalence of Tuple Relational Calculus
and Relational Algebra (cont.)

{ }])i[utandand]i[ut()R(ut)R(kk11
k

)i,...,i,i(k21
==∃= Kπ

COP 4710: Database Systems (Chapter 4) Page 36 Mark Llewellyn

Query #1

English: List the names of the suppliers who are located in Orlando.

tuple calculus: {t.name | t(suppliers) and t.city = “Orlando”}

• This query sets up a tuple variable named t that ranges
over the suppliers relation and “selects” those tuples
which make the predicate “city = Orlando” true.

relational algebra: π(name)(σ(city = Orlando)(p))

Example Tuple Relational Calculus Queries

COP 4710: Database Systems (Chapter 4) Page 37 Mark Llewellyn

Query #2

English: For every part list the name of the part and its
weight.

tuple calculus: {t.name, t.weight | t(parts)}

• This query is more simple than the first in that for every
tuple in the parts relation we are simply listing the two
attributes of name and weight.

relational algebra: π(name, weight)(p)

Example Tuple Relational Calculus Queries (cont.)

COP 4710: Database Systems (Chapter 4) Page 38 Mark Llewellyn

Query #3

English: List the part numbers for parts shipped to jobs located in Madrid.

tuple calculus: {x.p# | x(spj) and (∃y(j) and y.city=”Madrid” and
y.j# = x.j#)}

• This query is a little bit more complicated since two relations are
involved. Tuple variable x is the only free variable (as it must be)
and tuple variable y is bound to the WFF which includes the
predicates y.city=Madrid and y.j# =x.j#. The way this basically
works is this: x assumes the value of one of the tuples from the spj
relation (the relation it ranges over) and for each value of x the we
are “searching” for value of y, which ranges over the jobs relation,
that will make the predicate true. If such a tuple y exists, then the
part number from the x tuple variable is “returned” to the resulting
relation.

Example Tuple Relational Calculus Queries (cont.)

COP 4710: Database Systems (Chapter 4) Page 39 Mark Llewellyn

Query #4

English: List the supplier numbers for suppliers who do not ship part P2.

tuple calculus: {y.s# | y(s) and not(∃x(spj) and x.p#=”P2” and y.s#=x.s#)}

• For this query we are looking for the existence of a tuple variable y
(which ranges over the suppliers relation) for which we cannot find
the existence of a tuple variable y (which ranges over spj) that makes
the predicate true. In other words, if there does exist a tuple in spj
with the same supplier number as in the y tuple variable and for
which the part number is P2, then this is a supplier who ships part P2
and they should not be included in the result relation.

relational algebra: (π(s#)(s)) – (π(s#)(σ(p#=P2)(spj)))

Example Tuple Relational Calculus Queries (cont.)

COP 4710: Database Systems (Chapter 4) Page 40 Mark Llewellyn

• In general, the quantifiers can be transformed into the
other quantifier with negation, and/or replace one
another, a negated formula becomes un-negated and an
un-negated formula becomes negated.

• There are however, some special cases which arise in
these equivalences of which you need to be aware.

• A few of the more important ones are shown below along
with one which is commonly used by many people, but is
incorrect!

Quantifier Implications and Equivalences

COP 4710: Database Systems (Chapter 4) Page 41 Mark Llewellyn

1. ∀x(P(x)) ≡ not ∃x(not P(x))

2. not(∃x)(P(x)) ⇒ not(∀x)(P(x))

3. (∃x)(P(x)) ≡ not (∀x)(not (P(x)))

4. (∀x)(P(x) and Q(x)) ≡ not (∃x)(not (P(x)) or not (Q(x)))

5. (∀x)(P(x) or Q(x)) ≡ not (∃x)(not (P(x)) and not (Q(x)))

6. (∃x)(P(x)) or Q(x)) ≡ not (∀x)(not (P(x)) and not (Q(x)))

7. (∃x)(P(x) and Q(x)) ≡ not (∀x)(not (P(x)) or not (Q(x)))

8. (∀x)(P(x) ⇒ (∃x)(P(x))

9. not (∃x)(P(x) ⇒ not (∀x)(P(x)

10. not(∀x)(P(x)) ⇒ not(∃x)(P(x)) this implication is not true!

Quantifier Implications and Equivalences (cont.)

COP 4710: Database Systems (Chapter 4) Page 42 Mark Llewellyn

• Equivalence 1 can be interpreted in the following manner when
considering the right hand side: “there does not exist a value for x
for which the predicate is not true”. The flip side of this is, of
course, for every value of x the predicate must be true.

• Implication 2 can be interpreted in the following manner: (left hand
side)“there does not exist a value for x for which the predicate is
true” implies that (right hand side) the predicate is not true for every
value of x”. This one you might have to think about for a minute.
Looking at it from another direction consider this: if there exists a
value of x that makes the predicate true, then the not in front of the
expression would result in a value of false. So, the only way that the
left hand side could be true would be the situation when all possible
values of x cause the predicate to be false, in which case the not will
evaluate to true. From the right hand side think of it this way: if
there is one single value that x can assume which makes the
predicate false, then the universal quantifier will return false, yet the
negation in front of it would return true for this case.

Quantifier Implications and Equivalences (cont.)

COP 4710: Database Systems (Chapter 4) Page 43 Mark Llewellyn

• Implication 10 is simply wrong, but it is often mistakenly
used, especially by beginning database students … so
don’t you become one of these who do it wrong!

• The implication is that if not every value of x makes the
predicate true then this implies that there does not exist a
value of x which does make the predicate true. Clearly,
this is not necessarily the case.

– As an illustration, suppose that there are 12 tuples in our
universal space, so x can assume any of these 12 tuples. Now
let’s suppose that 10 of these tuples satisfy the predicate P and 2
of these tuples do not satisfy P. Then clearly not every value of x
satisfies P, but at the same time we cannot say that there does not
exist any values of x which satisfy P, since in this case there were
10 of them that did. So clearly, this implication is false, so don’t
be tempted to use it.

Quantifier Implications and Equivalences (cont.)

